
Detecting Sequentially Novel Classes
with Stable Generalization Ability

Da-Wei Zhou1, Yang Yang2, and De-Chuan Zhan1(B)

1 National Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

zhoudw@lamda.nju.edu.cn, zhandc@nju.edu.cn
2 Nanjing University of Science and Technology, Nanjing 210023, China

yyang@njust.edu.cn

Abstract. Recognizing object of unseen novel classes is of great impor-
tance in real-world incremental data scenarios. Additionally, novel classes
arise frequently in data stream mining, e.g., new topics in opinion moni-
toring, and novel protein families in protein sequence classification. Con-
ducting streaming novel class detection is a complex problem composed
of detection and model update. However, when updating the model solely
with detected novel instances, it concentrates more on the novel patterns
than known ones; thus the detection ability of the model may degrade
consequently. This would exert harmful affections to further classification
as the data evolving. To this end, in this paper, we consider the accu-
racy of the detection along with the robustness of model updating, and
propose DEtecting Sequentially Novel clAsses with Stable generalization
Ability (DesNasa). Specifically, DesNasa utilizes a prototypical net-
work to reflect the structure information between scattered prototypes
for novel class detection. Furthermore, the well-designed data augmenta-
tion method can help the model learning novel patterns robustly without
degrading detection ability. Experiments on various datasets successfully
validate the effectiveness of our proposed method.

Keywords: Novel class detection · Data stream classification · Open
world learning

1 Introduction

In our dynamically evolving world, data is often with stream format, which may
only be available temporarily for storage constraints or privacy issues. To tackle
this, many incremental algorithms are proposed, e.g., open-ended object detec-
tion [16], incremental image classification [17] and online video classification [21].
While these methods ignore an essential issue of streaming data, namely the
emergence of unseen category [25], e.g., in online opinion monitoring, new topics
often emerge as news happens [13]; in protein sequence classification, new types
of proteins would arise as nature evolves [23]. Under such circumstances, the
problem can be decomposed into three sub-problems: detecting novel classes,
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12712, pp. 371–382, 2021.
https://doi.org/10.1007/978-3-030-75762-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75762-5_30&domain=pdf
https://doi.org/10.1007/978-3-030-75762-5_30

372 D.-W. Zhou et al.

classifying known instances, and updating model in the data stream [14]. As
a result, traditional anomaly detection methods cannot handle this situation.
They only stress one of the three tasks as novelty detection, thus triggering the
development in streaming sequentially novel class detection.

There is much research regarding efficiently detecting novel classes with
model updating. [6] detects outliers having strong cohesion among themselves,
and uses ensemble of clustering models for classification. [3] utilizes nearest
neighbor ensemble to deal with problems of different geometric distances. [13]
assumes the label of stream data is available after some time delay and adopts
clustering method for novelty detection and known classification. [14] utilizes
completely-random trees with growing mechanism for model update, and [15]
approximates original information by a dynamic low-dimensional structure via
matrix sketching. However, great hidden trouble often occurs when deploying
these methods with sequentially new classes, namely detection ability degrad-
ing [6]. Since these methods are designed for detecting and model update in a
few periods, they ignore the ability of forecasting in the long future. That is,
solely updating the model with limited novel instances incorporates imbalanced
confusion into the current model. The performance of the model shall suffer a
decline in the following periods, which harms both the accuracy of classifying
known classes and the ability to detect the unknown novel classes. As a result,
after several times of updating, error accumulates and the models will fail to
predict. These two problems are concurrent, and impose the challenge of detec-
tion efficiency and detection stability to exploit these methods for developing
algorithms.

To solve the co-occurred problems in class incremental learning, we pro-
pose detecting sequentially novel classes with stable generalization ability
(DesNasa), which can identify the emergency new classes and learn novel pat-
terns simultaneously without degrading detection ability. Specifically, DesNasa
utilizes a prototypical network with intra-class compactness, aiming to acquire
the ability of learning distance function over input space and the task space.
Thus, the framework can consider information from the scattered prototypes
and incoming instance for new class detection. Moreover, the prototypes can
help in maintaining forecasting ability when learning novel patterns by mixed
replay. Consequently, we can detect and learn novel patterns more efficiently and
meanwhile maintain stable performance during the data stream evolution.

2 Related Work

Three key sub-problems, i.e., detecting emerging new classes, classifying known
instances, and updating models with detected novel patterns form the current
problem. Traditional anomaly detection methods [12,22] mainly focus on iden-
tifying anomaly or outlier under static environment. However, these methods
need the whole dataset to process, which is not suitable for streaming format
data in the dynamic environment. Consequently, several online novelty detection
methods have been proposed. [2] extends novelty detection to dynamic streams,
while the detection component and the update component differs in these meth-
ods, which results in accumulating error and hard to tune parameters. On the

Detecting Sequentially Novel Classes with Stable Generalization Ability 373

other hand, these methods are designed for novelty detection, which is a binary
classification problem. While in streaming novel class detection, a significant dif-
ference lies in that anomaly instances and known instances should be assigned
with certain class labels [14]. The model should have the ability to classify known
instances and update with data stream, thus making the above methods inca-
pable of stream novel class detection scenarios. To solve the three sub-problems
in a unified framework, many works try to introduce additional information in
stream mining. [13] used a clustering approach ECSMiner which tackles the novel
class detection and classification problems by introducing time constraints for
delayed classification. LACU [4] needs an unlabeled dataset to help classification.
[14] utilizes completely-random trees with growing mechanism, and [3] studied
nearest neighbor ensemble for different geometric distances. These methods need
additional information such as saving relatively large subsets of the original data
or obtaining an extra unlabeled dataset. However, heuristically saving subsets
consumes huge memory and complex select cost.

Other lines of study involve open-set recognition [5] and active learning [8].
Open-set recognition aims to conduct classification on known class instances
and reject unknown ones for pre-collected datasets. However, it differs with the
current scenario that the open-set model cannot update incrementally, thus these
methods are incapable of handling data streams. Active learning is designed for
achieving greater performance with fewer chosen labeled training instances. In
the current problem, only novel instances are chosen to update the model, which
can be seen as a particular case of active learning. Nevertheless, our target is
not only learning novel patterns but also maintaining the knowledge of former
classes, which is outside the scope of active learning.

3 Preliminaries

Notations. Given the initial model M pretrained on previous data, which con-
tains k classes, we have the streaming data as: S = {(xt, yt)}∞

t=1, where xt ∈ Rd

and yt ∈ Y = {1, 2, . . . , k, k + 1, . . . ,K} with K � k, t is the timestamp. The
goal is to utilize M as a detector for emerging new class and a classifier for
known class [3,14]. Then M is updated timely such that it maintains accurate
predictions for known and emerging new classes on streaming data S.

Problem Overview. The goal is to detect novel candidates and classify known
instances in the data stream. Stream data are fed into the model, and it scores
each instance with the probability of being a novel class. Instances predicted
as known classes would be passed to the classifier for prediction, while those
predicted as novel instances are saved in the buffer B. After the prediction of
every period, the model will request the true label of instances in the buffer
to reduce query cost, and remove instances belonging to existing classes. Only
true-novel instances in the buffer will be used to update the model [14]. The left
part of Fig. 1 shows the framework. More novel classes will arise, and the model
can learn to classify with time.

374 D.-W. Zhou et al.

Detail

β

Class2

Class1

Class3

Novel Class

Mixed Replay

β

Stream
Data

Novel

Detail

Classify in DESNASA

Score Each Instance
DESNASA Model

Query Real Novel
Save in Buffer

Update DESNASA

Learn to Recognize

Scattered Prototypes Embedding

Not
Novel

Fig. 1. Illustration of the framework. Stream data are fed into the model, and DesNasa
scores each instance of being novel. Instances predicted as novel are saved in the buffer.
Only real-novel instances in the buffer will be used to update the model. Specifically,
it assigns probability by the normalized distance between instance and prototypes in
embedding space. In the update stage, prototypes and novel instances are mixed for
alleviating detection ability decay.

4 Proposed Method

4.1 The Framework of DesNasa

Since the stream data is dynamic and ever-changing, a proper way to model
each class is to pick prototypical samples. To this end, we design a prototypical
deep model, which embeds scattered class centers and arrange probability of
belonging to a known class from distance in the embedding space. In detail,
DesNasa utilizes a deep network as embedding module E(·). Besides, the class
centers in the data steam can be maintained to represent every class, leading to
the class center set C. Then for class k, the mean of all instances belong to this
class can be calculated as: ck = 1

|Ωk|
∑

x∈Ωk
x . In consideration of the property

of data stream, we can maintain class centers through an incremental way:

ĉk = ck +
x − ck

|Ωk| + 1
. (1)

In order to obtain more diverse class centers, we introduce scattered class centers
with instance picking probability p:

ĉk,p = ck,p + I(γ < p)
x − ck,p

|Ωk| + 1
, (2)

where I(·) is the indicator function, and γ is randomly sampled from U(0, 1). We
define the picking probability of each prototype by dividing 0 ∼ 1 into P equal
parts, where P is the number of prototypes maintained for each class. That is,
prototypes with higher p will be calculated with more instances from this class,
thus different prototypes of same class would reveal diversity from each other.

Detecting Sequentially Novel Classes with Stable Generalization Ability 375

We denote scattered prototypes as Cij , where i ∈ {1, 2, · · · , k} represents class
index and j ∈ {1, 2, · · · , P} stands for prototype index.

After calculating the scattered prototypes, the embedding module E(·)
will then produce feature maps of E(Cij) and E(x) in the embedding space.
We assume that the distance in the embedding space can be used to mea-
sure the similarity between samples and prototypes, i.e., p (x ∈ Cij | x) ∝
− ‖E(x) − E(Cij)‖22 . Thus, by normalizing the distance of all known prototypes,
we are able to acquire the probability of x belonging to prototype Cij by:

p (x ∈ Cij | x) =
e−d(E(x),E(Cij))/τ

∑k
m=1

∑P
n=1 e−d(E(x),E(Cmn))/τ

, (3)

where d (E(x), E(Cij)) = ‖E(x) − E(Cij)‖22 represents the distance between E(x)
and E(Cij), τ corresponds to the temperature which controls the smoothness of
probability assignment. We further get the probability of p(y | x) by summing
the probability belonging to prototypes of same class up:

p(y | x) =
P∑

j=1

p (x ∈ Cyj | x) . (4)

Considering the probability calculated from embedding space, we then optimize
the embedding module by defining distance-based cross entropy:

Loss = − log p(y | x) = − log(
P∑

j=1

p (x ∈ Cyj | x)) . (5)

During the training process, we optimize the model by minimizing loss func-
tion Eq. 5. Then for instances from known class, the model maximizes the prob-
ability of x being associated with a prototype among prototype set C. Thus
it decreases the distance between incoming instances with the centroids from
the genuine class of the samples. We then introduce the novel class detection
algorithm.

4.2 Novel Class Detection

Classical novel class detection methods base on predict uncertainty or structure
information [3,14], and score each instance with the probability of being novel.
These methods will then manually set fixed threshold to determine the decision
boundary between unknown and known. However, the fixed threshold differs in
different tasks with different input distribution and thus hard to tune. In this
section, we develop a suitable strategy to set a dynamic threshold, which can
utilize the predicted uncertainty with structure information for better separation.

During the stream data deployment, for every instance in the stream S,
we should determine if it belongs to a known class or a novel class. Consid-
ering the probability arranged by embedding distance in Eq. 3. Instances with
higher probability are those closer to corresponding prototypes in the embedding

376 D.-W. Zhou et al.

Algorithm 1. Novel Class Detection
Input: Data stream : S = {xt}∞

t=1
Output: Class label of each xt

1: Empty buffer B ← ∅;
2: repeat

3: Get a test instance xt;
4: Calculate the embedding of instance E(xt);

5: Calculate the embeddings of prototypes E(Cij), ∀i = 1, 2, · · · , k; ∀j = 1, 2, · · · , P ;

6: Calculate normalized probability p(y | xt) ← Eq.4 ;
7: Calculate the confidence of predicted instance Conf(xt) = max p(y | xt) ;

8: if Conf(xt)< dynamic threshold dt then
9: Save xt in the buffer; B ← B ∪ {xt};

10: yt = k + 1, Predict as a novel class item;

11: Update dummy class center Cnovel ← Eq.1;

12: Update dynamic threshold dt ← Eq.7;
13: else
14: yt = argmax

y=1,...,k
p(y | x), predict as a known class;

15: end if
16: until Stream is empty

space. This indicates that the confidence of the model is equivalent to the out-
put highest probability max p(y | x) of Eq. 4. For a known instance, we have the
scattered prototypes maintained in the training process, and the corresponding
confidence should be relatively high. But for an unseen novel instance, we have
no prior about what this class is like, and the arranged probability shall separate
between all known prototypes; thus the model would not indicate relatively high
confidence than a known instance. We can design the detection formula of the
model:

f(x) =

{
argmax
y=1,...,k

p(y | x) if max p(y | x) > threshold

k + 1 otherwise
. (6)

Note that the threshold is designed to tell apart known instances from novel
classes, which is hard to tune between different tasks. We then design a dummy
class method for convenient threshold implementation. In detail, once we detect
novel-like candidates in the test stream, we then save them in the novelty buffer
B. Buffered instances will form the dummy class to estimate novel class distri-
bution by forming novel prototypes with Eq. 1. The dynamic threshold dt is
updated by:

d̂t = λ ∗ dt + (1 − λ) ∗ (max p(y | Cdummy) + m) , (7)

where λ is a trade-off parameter close to 1, and m is a positive margin, which
aims at making the threshold converge to the confidence of novel prototype and
keep it slightly higher. And m can be estimated with ηstd(max p(y | Cdummy)).
Considering when initially define the threshold, it may not well stand for the
cutoff between known classes and novel class. Each time the model detects a
novel candidate, the dynamic threshold will be updated through Eq. 7. Thus it

Detecting Sequentially Novel Classes with Stable Generalization Ability 377

Algorithm 2. Learn to Recognize
Input: Predicted novel instance buffer: B = {(xj ,yj)}m

j=1
Output: Updated model : M
1: Request true labels from B, and remove instances belonging to known classes.
2: for each novel instance (xj ,yj) ∈ B do

3: Update novel class center ← Eq.2
4: Sample a known class prototype (xi,yi)

5: Mix known class center and novel instance ← Eq.8

6: Calculate the embedding of the mixed instance E(x̃)
7: Calculate the embeddings of prototypes E(Cij),∀i = 1, 2, · · · , k; ∀j = 1, 2, · · · , P ;

8: Calculate the normalized probability p(y | x̃) ← Eq.4
9: Calculate distance-based cross-entropy Lj ← Eq. 5

10: Obtain the derivative
∂Lj

∂Θ
, update model;

11: end for

steps closer towards the ideal cutoff between novel dummy prototypes and known
prototypes. The algorithm for novel class detection is shown in Algorithm 1.

4.3 Learn to Recognize

Another essential part of DesNasa is to learn the pattern of novel class without
degrading detection ability. That is, how to update the model with only true-
novel instances in the buffer. Traditional methods based on structure information
may fail for unable to depict the novel class distribution. In contrast, DNN-based
methods may suffer severe imbalanced learning due to pure novel instances.
While in our model, we solve the problem by learning mixed replay.

For our model, a straightforward way to learn the novel patterns is to conduct
stochastic gradient descent on these pure-novel instances. While the performance
of the model will degrade when novel instances incorporating. This is caused
by the imbalanced learning phase in model updating, which harms the prior
knowledge, and thus makes the model incapable of forecasting as data evolves.
The model should concentrate equally on both former and current distributions.

Considering DesNasa maintains the prototypes in the data stream, which
stand for the data from the former distribution. A proper way is to retrain them
when updating the model with novel instances. That is, to train with the proto-
type along with novel instances. Thus the model can optimize for novel patterns
and meanwhile preserving former classes knowledge. However, a fatal problem
of overfitting often occurs when conducting many times of retraining on limited
prototypes [7]. To solve this problem, we design mixed replay which combines
scattered class centers along with novel instances to form mixed instance:

x̃ = βxi + (1 − β)xj ; ỹ = βyi + (1 − β)yj , (8)

where (xi,yi) is a known prototype, and (xj ,yj) is one novel class instance,
yi,yj are corresponding one-hot label encodings, and β ∈ [0, 1], we utilize the
interpolation of one known class center and one novel instance to force the model
concentrate on knowledge learned before. [24] proved Eq. 8 establishes a linear

378 D.-W. Zhou et al.

Table 1. Prediction results (mean ± standard deviation) of different compared meth-
ods on simulated streams. The best performance is bolded.

Methods
MNIST Fashion-MNIST HAR CIFAR10

F-Measure Accuracy F-Measure Accuracy F-Measure Accuracy F-Measure Accuracy

iForest+KNN 0.697 ± 0.04 0.687 ± 0.05 0.623 ± 0.03 0.679 ± 0.06 0.678 ± 0.02 0.696 ± 0.02 0.627 ± 0.04 0.666 ± 0.03
ODIN 0.752 ± 0.05 0.787 ± 0.05 0.744 ± 0.04 0.729 ± 0.03 0.776 ± 0.02 0.783 ± 0.01 0.801 ± 0.03 0.796 ± 0.03
LACU-SVM 0.699 ± 0.06 0.705 ± 0.08 0.633 ± 0.06 0.677 ± 0.04 0.691 ± 0.05 0.752 ± 0.03 0.644 ± 0.02 0.652 ± 0.04
ECSMiner 0.714 ± 0.06 0.737 ± 0.09 0.700 ± 0.02 0.746 ± 0.03 0.660 ± 0.04 0.682 ± 0.06 0.727 ± 0.05 0.731 ± 0.05
SENCForest 0.747 ± 0.04 0.763 ± 0.03 0.779 ± 0.02 0.781 ± 0.06 0.762 ± 0.06 0.782 ± 0.04 0.766 ± 0.03 0.717 ± 0.03
SENNE 0.807 ± 0.04 0.789 ± 0.04 0.794 ± 0.06 0.783 ± 0.05 0.811 ± 0.02 0.808 ± 0.03 0.798 ± 0.03 0.770 ± 0.02
CPL 0.747 ± 0.06 0.755 ± 0.06 0.766 ± 0.08 0.750 ± 0.07 0.744 ± 0.04 0.785 ± 0.06 0.764 ± 0.03 0.768 ± 0.03

DesNasa 0.830 ± 0.03 0.829 ± 0.03 0.816 ± 0.03 0.812 ± 0.02 0.819 ± 0.03 0.824 ± 0.02 0.862 ± 0.03 0.860 ± 0.03

(a) MNIST (b) HAR (c) CIFAR10

Fig. 2. Accuracy curve of different methods over sequential stages.

relationship between data augmentation and the supervision signal, and thus
leads to a strong regularizer that improves generalization. Considering the phe-
nomenon that solely replays over instances from former distribution shall cause
overfitting, Mixed replay offers a simple way to overcome this drawback.

Indeed, after many rounds of training with mixed replay (x̃, ỹ), the model
acquires the pattern of novel classes and meanwhile consolidates prior knowledge.
The guideline for learning to recognize novel class is shown in Algorithm 2.

5 Experiments

Datasets and Configurations. We provide the empirical results and per-
formance comparison of DesNasa. In particular, we test with 4 benchmark
datasets, i.e., MNIST [10], Fashion-MNIST [19], CIFAR10 [9], and HAR [1], and
1 real-world incremental dataset, i.e., NYTimes [14], which consists of 35,000 lat-
est news crawled with the New York Times API. Each news item is classified into
six categories, namely, ‘Arts’, ‘Business Day’, ‘Sports’, ‘U.S.’, ‘Technology’ and
‘World’. Each instance is converted into a 100 dimension vector with word2vec.

Following the typical setting as [3,14], to simulate emerging new classes in the
data stream, we assume that training set D with two known classes is available
at the initial stage. Instances of these two known classes and an emerging new
class appear in the first period of the data stream with uniform distribution. In
the second period, instances of these three classes seen in the first period and

Detecting Sequentially Novel Classes with Stable Generalization Ability 379

Table 2. Prediction results (mean ± standard deviation) of different compared meth-
ods on novel class forecasting, which stands for performance of the model during next
period when updating with different compared methods.

Methods
MNIST Fashion-MNIST HAR CIFAR10

F-Measure Accuracy F-Measure Accuracy F-Measure Accuracy F-Measure Accuracy

SGD 0.310 ± 0.06 0.386 ± 0.05 0.619 ± 0.05 0.656 ± 0.05 0.626 ± 0.09 0.676 ± 0.07 0.671 ± 0.05 0.705 ± 0.04
Selective Replay 0.410 ± 0.04 0.463 ± 0.03 0.604 ± 0.07 0.648 ± 0.08 0.640 ± 0.07 0.680 ± 0.04 0.681 ± 0.06 0.707 ± 0.05
Distill Replay 0.496 ± 0.08 0.552 ± 0.06 0.666 ± 0.09 0.693 ± 0.08 0.656 ± 0.05 0.691 ± 0.04 0.772 ± 0.02 0.768 ± 0.02
Generative Replay 0.401 ± 0.09 0.468 ± 0.08 0.498 ± 0.06 0.557 ± 0.07 0.581 ± 0.07 0.609 ± 0.09 0.680 ± 0.02 0.729 ± 0.02

Mixed Replay 0.832 ± 0.03 0.831 ± 0.03 0.834 ± 0.07 0.835 ± 0.05 0.792 ± 0.06 0.797 ± 0.05 0.863 ± 0.02 0.862 ± 0.02

(a) MNIST (b) HAR (c) CIFAR10

Fig. 3. The test accuracy on initial classes when model update with different methods.

another emerging new class appear with uniform distribution. Instances appear
one at a time, and the model should make a prediction for every instance before
processing the next. Each dataset is used to simulate a data stream over five
trails, and both mean and standard variance of the performance are reported.
Considering novel classes may arise simultaneously in a single period, while some
compared methods cannot handle it. We simulate one novel class to arrive in a
single period for a fair comparison.

Compared Methods. We first compare to a common-used novelty detec-
tion method iForest [12] and deep anomaly detection algorithm ODIN [11]. We
also compare to the state-of-the-art methods which combine novel class detec-
tion with model update: LACU-SVM [4], ECSMiner [13], SENC-Forest [14],
SENNE [3]. Convolutional prototype learning method CPL [20] is also com-
pared. We also conduct experiments to evaluate the forecasting ability of the
model. We adopt the same embedding module and detection rules for novel
class detection, and 4 major methods, i.e., SGD, Selective Replay [7], Genera-
tive Replay [18] and Distill Replay [17] are implemented for the model update
process: SGD: update model with only novel instances; Selective Replay:
save former instances with reservoir sampling, and retrain them with the novel
instance at update stage; Generative Replay: training generative model for
former data distribution, and rehearsal generated data with novel instance to
update; Distill Replay: consider knowledge distillation loss of former instance
when updating the model. Note that the latter three methods are initially pro-
posed to overcoming forgetting of former knowledge in incremental learning [21],

380 D.-W. Zhou et al.

which can be viewed as a similar problem as the detection ability decline in our
paper.

F-Measure and Accuracy are recorded to evaluate the detection and classifi-
cation performance, respectively [3,14]. F-measure evaluates the effect of novel
class detection, which is calculated at several intervals and use the average as
the final evaluation. Accuracy= Anovel +Aknown

m , where m is the total number of
stream instances, Anovel is the number of novel instances identified correctly,
Aknown is the number of known class instances classified correctly.

Real-World Stream Data Classification. The stream prediction results,
which calculate the Accuracy and F-measure are reported in Table 1. Figure 2
shows the prediction accuracy curve on corresponding simulated streams. From
Table 1, it reveals that for all datasets, DesNasa almost consistently achieves
the significant superior performance comparing to other methods. LACU-SVM
requires additional unlabelled instances in training and every model update, and
ECSMiner needs all the true labels to train a new classifier, and they still per-
formed worse than DesNasa in both measures. The performance of iForest is
dissatisfactory on the dataset with high dimensions for it is tree-based, which
only uses a few dimensions for tree building. SENNE needs to store huge amounts
of data/ensemble models, but our DesNasa still outperforms it in all datasets.
ODIN and CPL utilize the same DNN backbone as DesNasa , while they reveal
unsatisfactory results for the fixed threshold is hard to tune, but DesNasa can
dynamically adjusting threshold with data stream evolving.

Detection Ability Maintenance. We also conduct experiments about detec-
tion ability maintenance. Table 2 and Fig. 3 shows the result of same base model
(embedding and detection rules) updating with different methods. In Fig. 3,
after updating with other compared methods, prior knowledge of the model will
be disturbed, which results in the degrading of detection ability. Additionally,
Table 2 shows the corresponding prediction performance of the next period when
updating with these methods, which reveals that the forecasting ability will be
degraded with other methods. In comparison, the model updated with mixed
replay suffers the least disturbance in model updating, and can achieve the best
performance in the next-period prediction.

Stream News Identification. In this part, we conduct experiments in a real-
world text stream, i.e., NYTimes. News categorization for a news stream is an
important issue, where a new topic of news may arise due to a newly occurred
event. News data are categorized into six classes, and we treat two of them as
known classes at the initial stage and simulate others to appear sequentially in
the later stages. Figure 4 shows the experiment results. We can infer from Fig.
4(a) that in a real-world text stream, DesNasa can still achieve the best per-
formance among all compared methods. Figure 4(b) indicates the mixed replay
in DesNasa can help the model dealing with sequentially novel classes with the
least detection ability degrading.

Detecting Sequentially Novel Classes with Stable Generalization Ability 381

Fig. 4. Accuracy curve on NYTimes. Left: prediction accuracy with data evolves.
Right: test accuracy on initial known classes when model update with different meth-
ods.

6 Conclusion

In many real-world incremental data scenarios, data arise with novel classes. To
solve novel class detection and model extension problem, we propose a novel
framework to detect sequentially novel classes with stable generalization ability
(DesNasa). It can efficiently detect the novel class and extend the model with
the least detection ability degrade. More specifically, DesNasa can detect novel
class instances by utilizing the structure information of a prototypical network.
Furthermore, it can learn to recognize through data augmentation between pro-
totypes and novel instances without degrading detection ability. Experiments
on image and text datasets successfully validate DesNasa stabilizes the perfor-
mance of the regularly updated model.

Acknowledgments. This research was supported by NSFC (61773198, 61632004,
61921006, 62006118), NSFC-NRF Joint Research Project under Grant 61861146001,
Collaborative Innovation Center of Novel Software Technology and Industrialization,
CCF- Baidu Open Fund (CCF-BAIDU OF2020011), Baidu TIC Open Fund, Natural
Science Foundation of Jiangsu Province of China under Grant (BK20200460) and Nan-
jing University Innovation Program for PhD candidate (CXYJ21-53). De-Chuan Zhan
is the corresponding author.

References

1. Aggarwal, C.C.: A survey of stream clustering algorithms. In: Data Clustering, pp.
231–258. Chapman and Hall/CRC (2018)

2. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detec-
tion for streaming data. Neurocomputing 262, 134–147 (2017)

3. Cai, X.-Q., Zhao, P., Ting, K.-M., Mu, X., Jiang, Y.: Nearest neighbor ensembles:
an effective method for difficult problems in streaming classification with emerging
new classes. In: ICDM, pp. 970–975. IEEE (2019)

4. Da, Q., Yu, Y., Zhou, Z.-H.: Learning with augmented class by exploiting unlabeled
data. In: AAAI, pp. 1760–1766 (2014)

382 D.-W. Zhou et al.

5. Geng, C., Huang, S.-J., Chen, S.: Recent advances in open set recognition: a survey.
TPAMI (2020)

6. Haque, A., Khan, L., Baron, M.: Sand: semi-supervised adaptive novel class detec-
tion and classification over data stream. In: AAAI, vol. 16, pp. 1652–1658 (2016)

7. Isele, D., Cosgun, A.: Selective experience replay for lifelong learning. In: AAAI,
pp. 3302–3309 (2018)

8. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. In:
NIPS, pp. 4225–4235 (2017)

9. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical report, Citeseer (2009)

10. LeCun, Y., Cortes, C., Burges, C.J.: Mnist handwritten digit database. AT&T
Labs, 2:18 (2010). http://yann.lecun.com/exdb/mnist

11. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: ICLR (2018)

12. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: ICDM, pp. 413–422 (2008)
13. Masud, M., Gao, J., Khan, L., Han, J., Thuraisingham, B.M.: Classification and

novel class detection in concept-drifting data streams under time constraints.
TKDE 23(6), 859–874 (2010)

14. Mu, X., Ting, K.M., Zhou, Z.-H.: Classification under streaming emerging new
classes: a solution using completely-random trees. TKDE 29(8), 1605–1618 (2017)

15. Mu, X., Zhu, F., Du, J., Lim, E.-P., Zhou, Z.-H.: Streaming classification with
emerging new class by class matrix sketching. In: AAAI, pp. 2373–2379 (2017)

16. Perez-Rua, J.-M., Zhu, X., Hospedales, T.M., Xiang, T.: Incremental few-shot
object detection. In: CVPR, pp. 13846–13855 (2020)

17. Rebuffi, S.-A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: incremental classifier
and representation learning. In: CVPR, pp. 2001–2010 (2017)

18. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: NeurIPS, pp. 2990–2999 (2017)

19. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-Mnist: a novel image dataset for bench-
marking machine learning algorithms. preprint arXiv:1708.07747 (2017)

20. Yang, H.-M., Zhang, X.-Y., Yin, F., Liu, C.-L.: Robust classification with convo-
lutional prototype learning. In: CVPR, pp. 3474–3482 (2018)

21. Yang, Y., Zhou, D.-W., Zhan, D.-C., Xiong, H., Jiang, Y.: Adaptive deep models
for incremental learning: considering capacity scalability and sustainability. In:
SIGKDD, pp. 74–82 (2019)

22. Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection.
In: SIGKDD, pp. 688–693 (2002)

23. Zhang, D., Liu, Y., Si, L.: Serendipitous learning: learning beyond the predefined
label space. In: SIGKDD, pp. 1343–1351 (2011)

24. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk
minimization. In: ICLR (2018)

25. Zhou, Z.-H.: Learnware: on the future of machine learning. Front. Comput. Sci.
10(4), 589–590 (2016)

http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1708.07747

	Detecting Sequentially Novel Classes with Stable Generalization Ability
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Method
	4.1 The Framework of DesNasa
	4.2 Novel Class Detection
	4.3 Learn to Recognize

	5 Experiments
	6 Conclusion
	References

